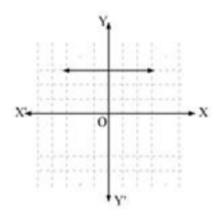
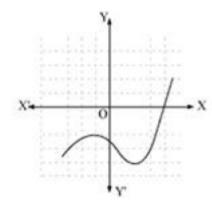
<u>Exercise 2.1 (Revised) - Chapter 2 - Polynomials - Ncert Solutions class 10 - Maths</u>

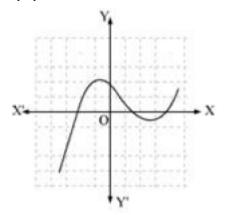

Updated On 11-02-2025 By Lithanya

NCERT Solutions Class 10 Maths: Chapter 2 - Polynomials | Comprehensive Answers

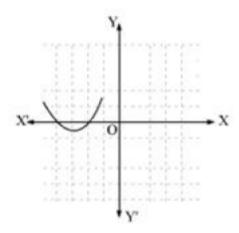

Ex 2.1 Question 1:

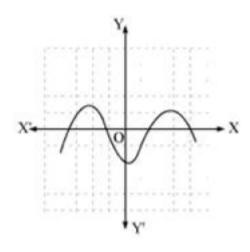
1. The graphs of y = p(x) are given to us, for some polynomials p(x). Find the number of zeroes of $\mathbf{p}(\mathbf{x})$, in each case.

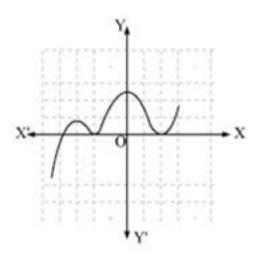
(i)



(ii)




(iii)


(iv)

(v)

(vi)

Answer.

- (i) The given graph does not intersects x-axis at all. Hence, it does not have any zero.
- (ii) Given graph intersects x-axis 1 time. It means this polynomial has 1 zero.
- (iii) Given graph intersects x-axis 3 times. Therefore, it has 3 zeroes.
- (iv) Given graph intersects x-axis 2 times. Therefore, it has 2 zeroes.
- (v) Given graph intersects x-axis 4 times. It means it has 4 zeroes.
- (vi) Given graph intersects x-axis 3 times. It means it has 3 zeroes.

Exercise 2.2 (Revised) - Chapter 2 - Polynomials - Ncert Solutions class 10 -

Updated On 11-02-2025 By Lithanya

NCERT Solutions Class 10 Maths: Chapter 2 - Polynomials | **Comprehensive Answers**

Ex 2.2 Question 1.

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeros and the coefficients.

(i)
$$x^2 - 2x - 8$$

(ii)
$$4s^2 - 4s + 1$$

(iii)
$$6x^2 - 3 - 7x$$

(iv)
$$4u^2 + 8u$$

(v)
$$t^2 - 15$$

(vi)
$$3x^2 - x - 4$$

Answer.

(i)
$$x^2 - 2x - 8$$

Comparing given polynomial with general form of quadratic polynomial $ax^2 + bx + c$,

We get
$$a=1,\ b=-2$$
 and $c=-8$

We have,
$$x^2 - 2x - 8$$

$$=x^2-4x+2x-8$$

$$= x(x-4) + 2(x-4) = (x-4)(x+2)$$

Equating this equal to 0 will find values of 2 zeroes of this polynomial.

$$(x-4)(x+2) = 0$$

$$\Rightarrow x=4,-2$$
 are two zeroes.

Sum of zeroes
$$=4+(-2)=2=$$

$$\Rightarrow \frac{-(-2)}{1} = \frac{-b}{a} = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

Product of zeroes $= 4 \times (-2) = -8$

$$= \frac{-8}{1} = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(ii)
$$4s^2 - 4s + 1$$

Here,
$$a=4, b=-4$$
 and $c=1$

We have,
$$4s^2 - 4s + 1$$

$$=4s^2-2s-2s+1$$

$$=2s(2s-1)-1(2s-1)$$

$$=(2s-1)(2s-1)$$

Equating this equal to 0 will find values of 2 zeroes of this polynomial.

$$\Rightarrow (2s-1)(2s-1) = 0$$

$$\Rightarrow s = \frac{1}{2}, \frac{1}{2}$$

Therefore, two zeroes of this polynomial are
$$\frac{1}{2}$$
, $\frac{1}{2}$. Sum of zeroes $=\frac{1}{2}+\frac{1}{2}=1=\frac{-(-1)}{1}\times\frac{4}{4}=\frac{-(-4)}{4}$. $=\frac{-b}{a}=\frac{-\operatorname{Coefficient of }x}{\operatorname{Coefficient of }x^2}$

$$=\frac{-b}{a}=\frac{-\text{Coefficient of }x}{\text{Coefficient of }x^2}$$

Product of Zeroes
$$=\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

$$= \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(iii)
$$6x^2 - 3 - 7x \implies 6x^2 - 7x - 3$$

Here,
$$a=6,b=-7$$
 and $c=-3$

We have,
$$6x^2 - 7x - 3$$

$$=6x^2-9x+2x-3$$

$$=3x(2x-3)+1(2x-3)=(2x-3)(3x+1)$$

Equating this equal to 0 will find values of 2 zeroes of this polynomial.

$$\Rightarrow (2x-3)(3x+1) = 0$$

$$\Rightarrow x = \frac{3}{2}, \frac{-1}{3}$$

Therefore, two zeroes of this polynomial are $\frac{3}{2}$, $\frac{-1}{3}$

Sum of zeroes
$$=$$
 $\frac{3}{2} + \frac{-1}{3} = \frac{9-2}{6} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-b}{a} = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$
Product of Zeroes $=$ $\frac{3}{2} \times \frac{-1}{3} = \frac{-1}{2} = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

Product of Zeroes
$$=\frac{3}{2}\times\frac{-1}{3}=\frac{-1}{2}=\frac{c}{a}=\frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(iv)
$$4u^2 + 8u$$

Here,
$$a=4, b=8$$
 and $c=0$

$$4u^2 + 8u = 4u(u+2)$$

Equating this equal to 0 will find values of 2 zeroes of this polynomial.

$$\Rightarrow 4u(u+2)=0$$

$$\Rightarrow u = 0, -2$$

Therefore, two zeroes of this polynomial are 0, -2

Sum of zeroes
$$=0-2=-2$$

Sum of zeroes
$$=0-2=-2$$
 $=\frac{-2}{1} imes rac{4}{4}=rac{-8}{4}=rac{-b}{a}=rac{- ext{Coefficient of }x^2}{ ext{Coefficient of }x^2}$

Product of Zeroes
$$= 0 \times -2 = 0$$
 $= \frac{0}{4} = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

$$=\frac{0}{4}=\frac{c}{a}=\frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(v)
$$t^2 - 15$$

Here,
$$a=1,\;b=0$$
 and $c=-15$

We have,
$$t^2-15 \Rightarrow t^2=15 \Rightarrow t=\pm \sqrt{15}$$

Therefore, two zeroes of this polynomial are
$$\sqrt{15}$$
, $-\sqrt{15}$

Therefore, two zeroes of this polynomial are
$$\sqrt{15}, -\sqrt{15}$$
 Sum of zeroes $=\sqrt{15}+(-\sqrt{15})=0=\frac{0}{1}=\frac{-b}{a}=\frac{-\operatorname{Coefficient of }x^2}{\operatorname{Coefficient of }x^2}$

Product of Zeroes
$$=\sqrt{15} imes(-\sqrt{15})=-15$$

$$= \frac{-15}{1} = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(vi)
$$3x^2 - x - 4$$

Here,
$$a=3,\;b=-1$$
 and $c=-4$

We have,
$$3x^2 - x - 4 = 3x^2 - 4x + 3x - 4$$

$$= x(3x-4) + 1(3x-4) = (3x-4)(x+1)$$

Equating this equal to 0 will find values of 2 zeroes of this polynomial.

$$\Rightarrow (3x-4)(x+1) = 0$$

$$\Rightarrow x = \frac{4}{3}, -1$$

Therefore, two zeroes of this polynomial are $\frac{4}{3}$, -1

Sum of zeroes
$$=$$
 $\frac{4}{3}$ + (-1) $=$ $\frac{4-3}{3}$ $=$ $\frac{1}{3}$ $=$ $\frac{-(-1)}{3}$ $=$ $\frac{-b}{a}$ $=$ $\frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$

Product of Zeroes
$$=\frac{4}{3} \times (-1) = \frac{-4}{3} = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Ex 2.2 Question 2.

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
, -1

(ii)
$$\sqrt{2}$$
, 13

(iii)
$$0, \sqrt{5}$$

(v)
$$\frac{-1}{4}$$
, $\frac{1}{4}$

Answer.

(i)
$$\frac{1}{4}$$
, -1

Let quadratic polynomial be
$$ax^2 + bx + c$$

Let α and β are two zeroes of above quadratic polynomial.

$$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$

$$\alpha \times \beta = -1 = \frac{-1}{1} \times \frac{4}{4} = \frac{-4}{4} = \frac{c}{a}$$

On comparing, we get

$$\therefore a = 4, b = -1, c = -4$$

Putting the values of a, b and c in quadratic polynomial $ax^2 + bx + c$, we get

Quadratic polynomial which satisfies above conditions $=4x^2-x-4$

(ii)
$$\sqrt{2}, \frac{1}{3}$$

Let quadratic polynomial be $ax^2 + bx + c$

Let α and β be two zeros of above quadratic polynomial.

$$a + \beta = \sqrt{2} \times \frac{3}{3} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$

$$\alpha \times \beta = \frac{1}{3}$$
 which is equal to $\frac{c}{a}$

On comparing, we get

$$\therefore a = 3, b = -3\sqrt{2}, c = 1$$

Putting the values of a, b and c in quadratic polynomial $ax^2 + bx + c$, we get

Quadratic polynomial which satisfies above conditions $=3x^2-3\sqrt{2}x+1$

(iii)
$$0, \sqrt{5}$$

Let quadratic polynomial be $cx^2 + bx + c$

Let α and β be two zeros of above quadratic polynomial.

$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$

On comparing, we get

$$\therefore a = 1, b = 0, c = \sqrt{5}$$

Putting the values of a, b and c in quadratic polynomial $ax^2 + bx + c$, we get Quadratic polynomial which satisfies above conditions

(iv) 1,1

Let quadratic polynomial be $cx^2 + bx + c$

Let α and β be two zeros of above quadratic polynomial.

$$\alpha + \beta = 1 = \frac{-(-1)}{1} = \frac{-b}{a}$$

$$lpha imes eta = 1 = rac{1}{1} = rac{c}{a}$$

On comparing, we get

$$\therefore a = 1, b = -1, c = 1$$

Putting the values of a, b and c in quadratic polynomial $ax^2 + bx + c$, we get

Quadratic polynomial which satisfies above conditions $=x^2-x+1$

(v)
$$\frac{-1}{4}, \frac{1}{4}$$

Let quadratic polynomial be $cx^2 + bx + c$

Let α and β be two zeros of above quadratic polynomial.

$$\alpha + \beta = \frac{-1}{4} = \frac{-b}{a}$$

$$\alpha \times \beta = \frac{1}{4} = \frac{c}{a}$$

On comparing, we get

$$\therefore a = 4, b = 1, c = 1$$

Putting the values of a, b and c in quadratic polynomial $ax^2 + bx + c$, we get Quadratic polynomial which satisfies above conditions

$$=4x^2+x+$$

(vi) 4,1

Let quadratic polynomial be $cx^2 + bx + c$

Let α and β be two zeros of above quadratic polynomial.

$$\alpha + \beta = 4 \frac{-(-4)}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$


On comparing, we get

$$\therefore a = 1, b = -4, c = 1$$

Putting the values of a, b and c in quadratic polynomial $ax^2 + bx + c$, we get

Quadratic polynomial which satisfies above conditions $= x^2 - 4x + 1$

